Eigenvalues and eigenfunctions of discrete conjugate boundary value problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Expansions of Eigenvalues and Eigenfunctions of Random Boundary-value Problems*

An asymptotic procedure is developed for calculating the eigenvalues and eigenfunctions of linear boundary-value problems which may contain random coefficients in the operator. The corresponding asymptotic series for the solution of a second-order initial-value problem is shown to be convergent.

متن کامل

Discrete Boundary-value Problems

We consider multivariate sequences, deened by a partial linear recurrence equation together with appropriate boundary conditions. The domain of deenition of these sequences is the rst orthant of the integer lattice, restricted in some dimensions to an initial segment of the nonnegative integers. By means of the kernel method we obtain an explicit expression for the generating function of the so...

متن کامل

Eigenvalues of complementary Lidstone boundary value problems

where l > 0. The values of l are characterized so that the boundary value problem has a positive solution. Moreover, we derive explicit intervals of l such that for any l in the interval, the existence of a positive solution of the boundary value problem is guaranteed. Some examples are also included to illustrate the results obtained. Note that the nonlinear term F depends on y’ and this deriv...

متن کامل

Positive Solutions and Eigenvalues of Nonlocal Boundary-value Problems

We study the ordinary differential equation x′′ + λa(t)f(x) = 0 with the boundary conditions x(0) = 0 and x′(1) = R 1 η x ′(s)dg(s). We characterize values of λ for which boundary-value problem has a positive solution. Also we find appropriate intervals for λ so that there are two positive solutions.

متن کامل

Solving Discrete Initial- and Boundary-Value Problems

Multivariate linear recurrences appear in such diverse elds of mathematics as combinatorics, probability theory, and numerical resolution of partial diierential equations. Whereas in the univariate case the solution of a constant-coeecient recurrence always has a rational generating function, this is no longer true in the multivariate case where this generating function can be non-rational, non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1999

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(99)00192-3